Announcements:

- · Thursdays classroom change SC LG 23 → LSK LT3
- · Quiz suspended until face-to-face teaching resumed
- · Tutorial classwork submit via Blackboard

Last week ... we talked about

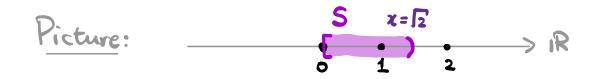
Completeness Property: Every \$= S = iR which is bounded above must have a supremum in iR. Recall: "Archimedean Property"

- · IN S IR is NOT bold above
- · Yt>o, Inein st. o< n< t
- Y y>0, 3! n EIN st. n-1 ≤ y < n

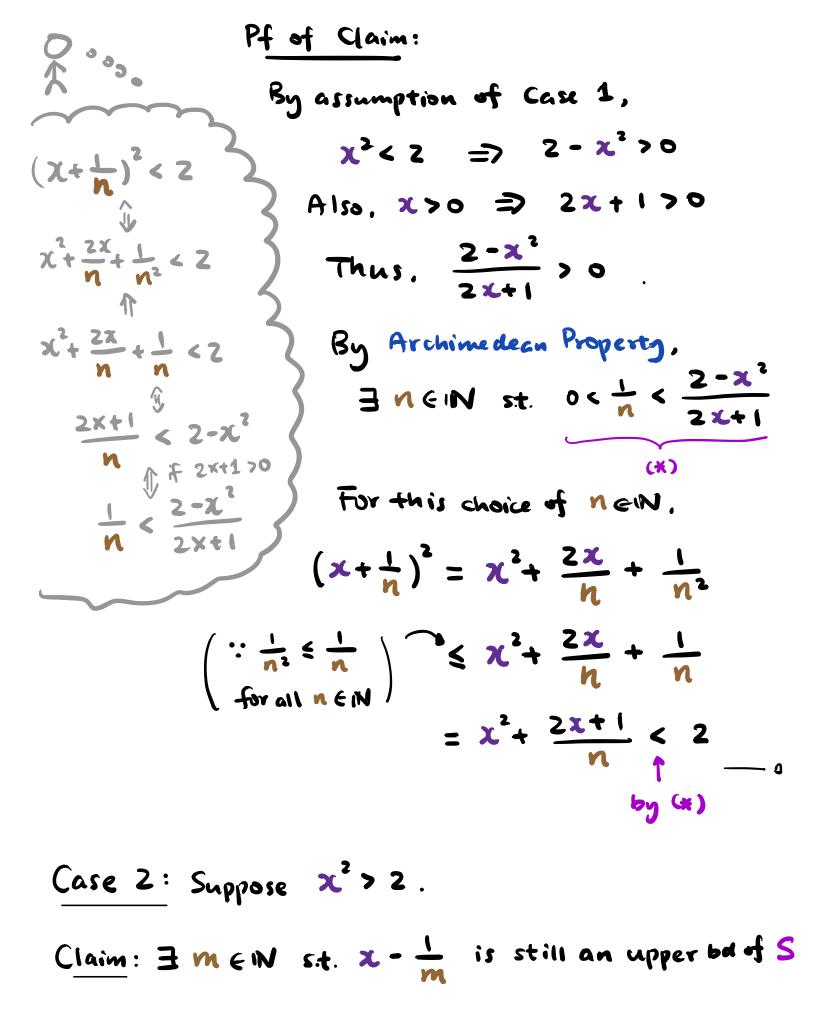
From Lecture 1, we proved that " $\int 2 \notin \mathbb{Q}$ ", i.e. " $\exists q \in \mathbb{Q}$ s.t. $q^2 = 2$."

Thm: (Existence of $\sqrt{2}$ in iR)

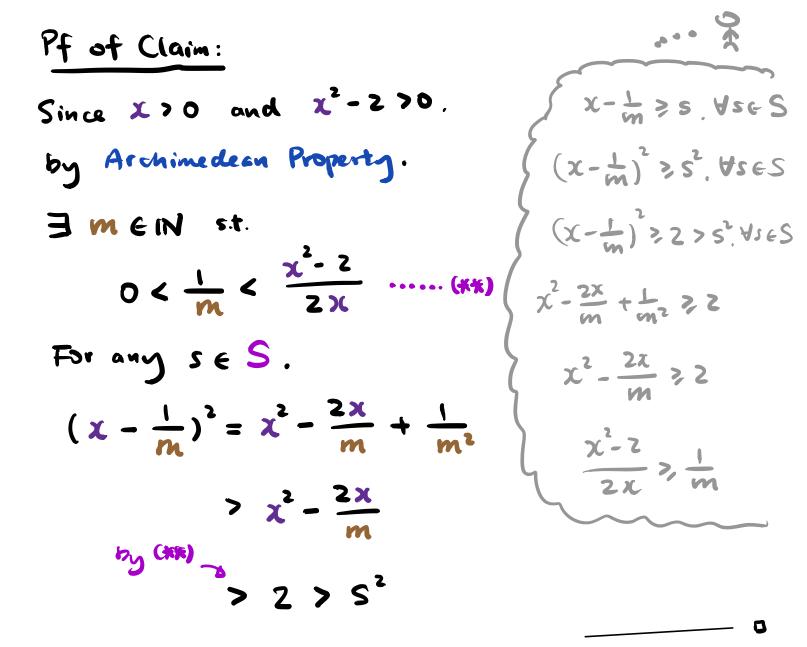
 $\exists x \in iR \text{ st. } x^2 = 2 \text{ and } x > 0$



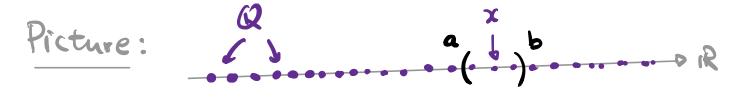
Froof: Let S := { s ∈ iR : s ≥ 0, s² < 2 } Note: 0 ∈ S ⇒ S ≠ Φ Claim: S is bod above. $\forall S \in S$, we have $S^2 < 2 < 4 = 2^2 \implies S < 2$ ie. 2 is an upper bd for S. Apply Completeness of IR to the subset S. $x := \sup S \in \mathbb{R}$ exists. Note: To see X>0, we observe that 1 ES 0<1<x since x = sup S is an upper bd of S It remains to show $\chi^2 = 2$ From the "trichotomy" (02), we have to rule out $\chi^2 < 2$ or $\chi^2 > 2$ Case 1: Suppose x²<2. Claim: $\exists n \in IN \quad st. \quad x + \frac{1}{n} \in S, i.e. \left(x + \frac{1}{n}\right)^2 < 2$ This will contradict the fact that x is an upper bd. for S.



This contradicts $\chi := \sup S$ is the least upper bd.



Thm: (Density of Q in iR) For any $a, b \in iR$ s.t. a < b. $\exists x \in Q$ s.t. a < x < b

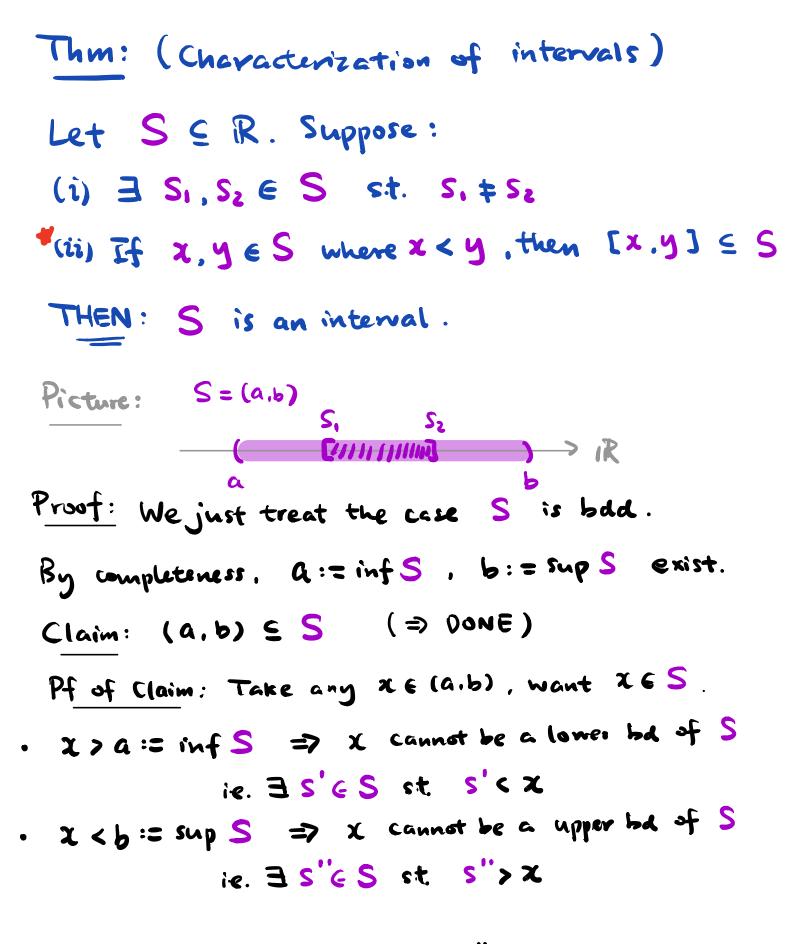


Proof: Since
$$a \le b$$
, so $b - a > 0$.
By Archimedean Property.
 $\exists n \in iN \text{ st} \ 0 < \frac{1}{n} < b - a$. (#)
By Archimedean Property.
 $m - i \le na < m$ for some $m \in iN$
i.e. $\frac{m}{n} - \frac{1}{n} \le a < \frac{m}{n} = : x \in Q$
Claim: $\frac{m}{n} < b$
 $Pf \text{ of claim}:$
 $\frac{m}{n} \le a + \frac{1}{n} < a + (b - a) = b$
Cor: The irrational numbers $R \setminus Q$ is dense in R
 $Pf:$ Take any $a < b$ in R . Consider $\frac{a}{12} < \frac{b}{12}$
by density of Q in R . $\exists q \in Q$ st.
 $\frac{a}{12} < q < \frac{b}{12} \Rightarrow a < \frac{g \cdot 12}{5} < b$

ξ	Intervals	(Textbook	& z.5)
---	-----------	------------	--------

39 types of intervals of IR, depending on whether it is closed lopen, bdd / unbdd. Notations: Fix a.b e R, a < b, $(a, \infty) := \{x \in \mathbb{R} : a < x\}$ $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ $[a,\infty) := \{x \in \mathbb{R} : a \in x\}$ $[a,b] := \{x \in \mathbb{R} : a \leq x \leq b\}$ (-00, b) := { x < k > x < b } $(a,b] := \{x \in \mathbb{R} : a < x < b\}$ (-00, 6] := [x GR : X 56] $[a,b) \coloneqq \{x \in \mathbb{R} : a \leq x < b\}$ $(-\infty,\infty) := \mathbb{R}$ "bdd intervals" " unbdd intervals" $Def^{=}$: Length (I) := b-a > 0 Q: When is SEIR an interval?

A: "connectedness".



But $x \in (S', S') \in [S', S'] \subseteq S$, so $x \in S$.